ACM SIGMOD City, Country, Year
sigmod pods logo

SIGMOD 2012: Industrial Presentations

  • Amazon DynamoDB: A Seamlessly Scalable Non-Relational Datastore, Swami Sivasubramanian, Amazon
  • Efficient Transaction Processing in SAP HANA Database--The End of a Column Store Myth, Vishal Sikka, SAP; Franz Färber, SAP; Wolfgang Lehner, TUD/SAP; Sang Kyun Cha, SAP; Thomas Peh, SAP; Christof Bornhövd, SAP
  • Walnut: A Unified Cloud Object Store, Jianjun Chen, Yahoo!; Chris Douglas, Yahoo!; Michi Mutsuzaki, Yahoo!; Patrick Quaid, Yahoo!; Raghu Ramakrishnan, Yahoo!; Sriram Rao, Yahoo!; Russell Sears, Yahoo!
  • The Value of Social Media Data in Enterprise Applications, Shivakumar Vaithyanathan, IBM Almaden Research Center
  • Anatomy of a Gift Recommendation Engine Powered by Social Media, Yannis Pavlidis, @WalmartLabs; Madhusudan Mathihalli, @WalmartLabs; Indrani Chakravarty, @WalmartLabs; Arvind Batra, @WalmartLabs; Ron Benson, @WalmartLabs; Ravi Raj, @WalmartLabs; Robert Yau, @WalmartLabs; Mike McKiernan, @WalmartLabs; Venky Harinarayan, @WalmartLabs; Anand Rajaraman, @WalmartLabs
  • Designing a Scalable Crowdsourcing Platform, Chris Van Pelt, CrowdFlower; Alex Sorokin, CrowdFlower
  • Query Optimization in Microsoft SQL Server PDW, Srinath Shankar, Microsoft; Rimma Nehme, Microsoft; Josep Aguilar-Saborit, Microsoft; Andrew Chung, Microsoft; Mostafa Elhemali, Microsoft; Alan Halverson, Microsoft; Eric Robinson, Microsoft; Mahadevan Sankara Subramanian, Microsoft; David DeWitt, Microsoft; César Galindo-Legaria, Microsoft
  • F1--The Fault-Tolerant Distributed RDBMS Supporting Google’s Ad Business, Jeff Shute, Google; Mircea Oancea, Google; Stephan Ellner, Google; Ben Handy, Google; Eric Rollins, Google; Bart Samwel, Google; Radek Vingralek, Google; Chad Whipkey, Google; Xin Chen, Google; Beat Jegerlehner, Google; Kyle Littlefield, Google; Phoenix Tong, Google
  • Oracle In-Database Hadoop: When MapReduce Meets RDBMS, Xueyuan Su, Yale University; Garret Swart, Oracle
  • TAO: How Facebook Serves the Social Graph, Zach Amsden, Facebook; Nathan Bronson, Facebook; George Cabrera III, Facebook; Prasad Chakka, Facebook; Peter Dimov, Facebook; Hui Ding, Facebook; Jack Ferris, Facebook; Anthony Giardullo, Facebook; Jeremy Hoon, Facebook; Sachin Kulkarni, Facebook; Nathan Lawrence, Facebook; Mark Marchukov, Facebook; Dmitri Petrov, Facebook; Lovro Puzar, Facebook; Venkateshwaran Venkataramani, Facebook
  • Large-Scale Machine Learning at Twitter, Jimmy Lin, Twitter; Alex Kolcz, Twitter
  • Recurring Job Optimization in Scope, Nicolás Bruno, Microsoft; Sameer Agarwal, Microsoft; Srikanth Kandula, Microsoft; Bing Shi, Microsoft; Ming-Chuan Wu, Microsoft; Jingren Zhou, Microsoft
  • Dynamic Workload-Driven Data Integration in Tableau, Kristi Morton, University of Washington; Ross Bunker, Tableau Software; Jock Mackinlay, Tableau Software; Robert Morton, Tableau Software; Chris Stolte, Tableau Software
  • Finding Related Tables, Anish Das Sarma, Google; Lujun Fang, Google; Nitin Gupta, Google; Alon Halevy, Google; Hongrae Lee, Google; Fei Wu, Google; Reynold Xin, Google; Cong Yu, Google
  • Optimizing Analytic Data Flows for Multiple Execution Engines, Alkis Simitsis, HP Labs; Kevin Wilkinson, HP Labs; Malu Castellanos, HP Labs; Umeshwar Dayal, HP Labs
  • CloudRAMSort: Fast and Efficient Large-Scale Distributed RAM Sort on Shared-Nothing Cluster, Changkyu Kim, Intel Labs; Jongsoo Park, Intel Labs; Nadathur Satish, Intel Labs; Hongrae Lee, Google Research; Pradeep Dubey, Intel Labs; Jatin Chhugani, Intel Labs
  • Adaptive Optimizations of Recursive Queries in Teradata, Ahmad Ghazal, Teradata; Dawit Seid, Teradata; Alain Crolotte, Teradata; Mohammed Al-Kateb, Teradata
  • From X100 to Vectorwise: Opportunities, Challenges and Things Most Researchers Do Not Think About, Marcin Zukowski, Actian; Peter Boncz, CWI